Gradient recovery for elliptic interface problem: II. Immersed finite element methods
نویسندگان
چکیده
منابع مشابه
Gradient recovery for elliptic interface problem: II. Immersed finite element methods
This is the second paper on the study of gradient recovery for elliptic interface problem. In our previous work [H. Guo and X. Yang, 2016, arXiv:1607.05898], we developed a novel gradient recovery technique for finite element method based on body-fitted mesh. In this paper, we propose new gradient recovery methods for two immersed interface finite element methods: symmetric and consistent immer...
متن کاملPartially Penalized Immersed Finite Element Methods For Elliptic Interface Problems
This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the ...
متن کاملImmersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions
In this work, a class of new finite-element methods, called immersed-interface finite-element methods, is developed to solve elliptic interface problems with nonhomogeneous jump conditions. Simple non–body-fitted meshes are used. A single function that satisfies the same nonhomogeneous jump conditions is constructed using a level-set representation of the interface. With such a function, the di...
متن کاملImmersed Finite Element Methods for Elliptic Interface Problems with Non-homogeneous Jump Conditions
Abstract. This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials emp...
متن کاملSuperconvergence of immersed finite element methods for interface problems
In this article, we study superconvergence properties of immersed finite element methods for the one dimensional elliptic interface problem. Due to low global regularity of the solution, classical superconvergence phenomenon for finite element methods disappears unless the discontinuity of the coefficient is resolved by partition. We show that immersed finite element solutions inherit all desir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2017
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2017.03.003